Chapter 2

Composite Systems and
Entanglement

In the previous section we discussed a single two level system and while its pretty cool how
much quantum physics can be discussed when looking at such a simple system.... there’s only
so far you can go. In this chapter, we extend the quantum formalism to analyze the behavior of
quantum systems composed of many degrees of freedom. We will see that when the postulates
of quantum mechanics are applied to systems of many particles, they give rise to interesting and
counter-intuitive phenomena such as quantum entanglement.

2.1 State Space for Many Particles

Suppose we have two particles, labeled A and B. We know the state of the system comprising
both particles, which we call AB, must be described by a vector in a complex vector space. The
natural question to ask is, in what space does a generic state for the two particles, ¢ 4p), live?
If we call H4 and Hp the vector (Hilbert) spaces in which the quantum states of the individual
particles live, then it is a postulate of quantum mechanics that a generic state vector describing
the combined system lives in a space

Hap=Has®HB.

The symbol ® refers to a tensor product, a mathematical operation that combines two vector
(Hilbert) spaces to produce another one.

The meaning of the tensor product is more easily understood in terms of explicit basis vectors,
in the case of discrete vector spaces. For this purpose, let us assume that H 4 is spanned by
a set of basis vectors {|u1),|u2), [3), . |un, )} and that Hp is spanned by a set of other basis
vectors {|v1),|v2),|v3),...|[vng) . Then, the vector space Hap is by construction spanned by
basis vectors consisting of all the pairwise combinations of the basis vectors of A and B, and
the basis states of the composite system are written as

’II’LZ)@’V]) ViE[l,nA],jE[l,nB]_

We can see that the total number of basis states for the composite system is ng x ng. All
quantum states in H 4p can be written as linear combinations of the composite basis states:

[Wap) =D cijlua) ® lvg) = 3 cijlAig)
ij

ij
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with ¢;; being some complex coefficients, and where we have defined the basis vectors |\;;) =
i) ® [v5).

In order to work with these states, we need to know how to perform inner products between
states belonging to the tensor product space H4p. The inner product between two basis states
is defined as

(AijlAk) = ((pil @ (v5]) (1w} ® [14)) = (il )wjlva) = dindji-

This definition is relatively easy to understand: the inner product is obtained as the product of
the elementary (A or B) inner products. Also, it shows that the basis states of the composite
system are orthogonal by construction. As a consequence, the inner product between two generic
states of the composite system

[0 =D bijlAi), ) =D cijlhig),
ij ij

reads
(Ql) =37 > bk Nijl ) = Zb;jcij'
ij

ij ki

We also see that the basis states of the composite system satisfy the closure relation:

> il = 1.
ij

Formally speaking, the tensor product satisfies all the intuitive properties you might expect from
a product. For example, given a scalar a and two arbitrary vectors |[v) € Hy and |w) € Hp, we
have

a(lv) ® [w)) = (alv)) @ [w) = [v) ® (aw)).

It is also distributive:

(lor) +[v2)) @ [w) = v1) @ [w) + [v2) @ [w),

[0) ® (Jw1) +[w2)) = [v) & [w1) +[v) @ [wg).

Finally, the construction of the product state space can be generalized from the case of two
particles to the case of many particles, A, B, C, ..., since the composite vector (Hilbert) space
will be simply given by the tensor product of the individual state spaces

Hape. =Ha®Hp® He ...,

and in general, the resulting space will have a large dimension when we have many particles,
since it is the product of the size of the individual dimensions

NABC... =NAXNBXNC X ... .
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2.1.1 Example: Two Qubits

Let us see an example of this formalism in the case of two qubits, i.e., for that case that H 4
and Hp are both vector spaces of dimension 2. As basis states of the individual spins, we take
the eigenkets of oz, thus the resulting tensor product space is given by the 4 states

D)ap =10)a®0)p
12)ap =[0)a®[1)p
13)ap =[1)a®[0)5

|4)ap =1)a ®[1)B,

and a generic state of two qubits is written as

4
[W)ap = ). cklk)as,
k=1
where, as always, by definition
ek = (k).

For example, take

0 = —= (004 )5 - 4@ 0h5) = = (2) - ).

V2 V2

We can easily check that this is a physically valid state, since it is correctly normalized:

(1) = 5 (22) + (313 - 1.

A note on notation! Writing out the composite state of [¢)) and |p) as [p) ® [¢) can feel a
bit cumbersome. So we often don’t bother to explicitly write out the ® and instead write [¢)|¢)
or just [¢p¢). That is,

< ) ele)
« [¥)o)
< ¥, ¢)
 |vo)

all mean the same thing! And you need to become comfortable switching between these nota-
tions.
2.2 Operators

So far, we have introduced the state space for a system of many particles, but we haven’t talked
about the operators that act on this space, and how they are related to the measurement process.
If we have two operators T4 and T acting on the individual spaces, the resulting operator that
acts on the product space is also written as a tensor product:

Tap=T4®1B,
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where the resulting operator T4p now acts on vectors in the space H4 ® Hp. The composite
operator acts as follows:

TaplAij) = (Ta® Tg) (Jpi) ® [v5)) = (Talpi)) © (Tslv;)),

thus, quite naturally, each of the two operators in the product acts on the kets that belong to
the respective vector spaces. As a special case, notice that if we are given only an operator that
acts on one of the two subsystems, this is to be understood as

Thg=Ta®Ip
if only T4 is given, and where Ip is the identity operator for subsystem B. Similarly,
Tip=11®Tg,

if only Tg is given. As a result, it is easy to see that these two operators, acting non-trivially
only on one of the two subsystems, commute since:

ThpTaplNij) = (14 ® Tp) (Ta ® Ip) (1) ® [v5)) = (Talpi)) ® (Tslv;))

ThpTiplhij) = (Ta®Ip) (Ta®Tp) (1) ® [v;)) = (Talps)) ® (Talv;)),
thus
[TA®1Ip,14®TE]=0.

2.2.1 Example: Spin % Operators

Let us give again an example for two qubits A and B. For concreteness, let’s now suppose that
the qubit represents a spin 1/2 particle. We write the spin z operator on the two individual

systems a S,(:) = %Z 4 where Z4 is the standard Pauli operator on system A such that
S5 m)a = mim).a,

S Im’) =m'|m') g,
for m,m’ = ﬂ:%. It is then natural to define the total spin as the sum of these two operators. In

order to do so, however, we need to recall that these operators are acting on different spaces, thus

before summing them up we need to “upgrade” them to be good operators for the composite

vector space. The total Sffg operator reads:

s& -5 erp+Ia057).

It is then straightforward to see how this operator acts on a general state. For example, if we
take a basis vector for the composite system, we have

SC (Im)a e m')g) = (Sif) ®Ip+1,® Sf;)) (Im)a®|m')5)
= (85 1m)a) @ m'y5 + [m)a ® (S5 m') 5 )

=m(jma ® |m')5) +m' (jm) @ ') )

= (m+m') (Im)a®|m’)5) .

(2.1)

thus the composite state is an eigenket of the total spin, with an eigenvalue (m +m') that is the
sum of the individual eigenvalues.

Remember that a qubit can represent all sorts of different systems and so this maths applies more
broadly. For example, if the qubit represents two energy levels of an atom with a Hamiltonian
Hs=wZ, then Hy® I+ 14 ® Hg would allow us to compute the total energy of two atoms.

'Remember, we work in nice tidy units such that & =1
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A note on notation! In the case of a composite operator Hy ® Hp you cannot drop the ®
(this is because H4Hp looks like you are multiplying the matrices) but its common to be lazy
and drop identity operations. That is, write Z4 instead of Z4 ® Ig or Z ® I. So, for example,

o Z4®Ip+Ia®Zp
o /RI+I®Z
° ZA""ZB

mean the same thing. Again, you’ll need to get comfortable switching notations.

2.2.2 Explicit matrix and vector representation of the tensor product

Generally you should try and stick to braket notation - this is typically simpler than writing
out explicit matrix descriptions of states of multi-qubit systems. But sometimes it is helpful to
visualise the composite vectors/operators explicitly. The basic idea behind the tensor product
is to multiply a copy of the second matrix by each element of the first matrix in turn and so we
have

S
= O
N—
®
—_——
O =
N——
Il
O R OO

exactly what would be naively expected. An equivalent approach can be used for operators, e.g.

1 1.0 0
(10)®L(11)_L1‘100
01) e\l 1) oo 11

00 1 -1

2.3 Measurements

For the single-component case, recall that the measurement process in quantum mechanics
works as follows. Consider a measurement operator A with eigenkets |4;) and corresponding
eigenvalues a;. Without loss of generality, an arbitrary state |1)) can be expressed in this basis:

) = ZB@'|A1'), where  (3; = (A;|v) € C.

Measuring ) under the operator A collapses the state into eigenket |4;) with probability P; =
|Bi?, producing measurement result ;.

In the case of a composite system, there are two kinds of measurements we can perform.
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2.3.1 Global Measurement

In the first case, we measure an operator T = T4 ® Tg, thus intrinsically defined to act on the
joint vector space, and in this sense corresponding to a measurement of the entire system AB.
Similarly to the standard situation, then we can diagonalize the operator:

T|T;) = tiT3),
in such a way that (assuming the operator has a non-degenerate spectrum)

= 2 ITiNTil),
thus a measurement will yield the state |T;) with probability P; = [(T;[)|.

2.3.2 Partial Measurement

In the second case, we can measure an operator that is defined only on one of the two subsystems,
for example T'4. In this sense, we are performing a partial measurement of the system, since we
measure only the properties of one subpart, ignoring the rest of the system. We can rewrite a
generic state of two particles as

V) = Zcz‘j\TAi) ®|Tg;) = Z |T4:i) ® (Z cij|T;) ) Z Tai) @ |67),
i i %
where we have defined

67 = 3 cij|T;)-
J

This expression then allows us to get a better intuition about what happens when we measure
only the first subsystem (A). In that case, assuming that we measure the operator T4 with
eigenvalues t4;, it is postulated that after the measurement the system collapses into

1) o< | Tai) ® |6F).

The probability for this to happen is postulated to be

By = (il (ITail(Tail  Ip))|i)

which is a generalization of what we have seen for the single particle case. That is, you're just
measuring the projector on system A and doing the trivial identity measurement on system B.
Let’s see what this evaluates to:

Py = (il (1Tai)(Tail ® Ip))i) = (67 167) = 3 i Tyl . canlToi) = Y. Sjuciicin = 3 leis
; % T 3

J

We can also explicitly compute the normalization of the state after the measurement, which
reads

1 1
i) = Ta) @ 167) = =) ©[0F)
N T e 2
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2.3.3 Example: Qubit Measurements

Let us consider again an example for two qubits. We consider the state
1
V2

and let us suppose that we are interested in measuring Z on system A. As always, this measure-
ment can yield only two possible outcomes, 1 and -1.

)= —=(10)a®[1)p-[1)a®[0)B),

The probability of obtaining +1 on the first qubit is the sum of i. the probability that the first
qubit is in the +1 state (|0)) and the second qubit is in the +1 state (|0)) and ii. the probability
that the first qubit is in the +1 state (|0)) and the second qubit is in the -1 state (|1)). That is,
Py = |cool* + |co1[* = 5. On getting this outcome, the system then collapses into the normalized
state |0)4 ® |1)B.

In the other case, i.e., if we get the —1 outcome, it is easy to see that the system collapses into
[1)4 ®10) 5 also with probability P- = 3.

2.4 Entanglement

In the previous discussion, we have seen that the measurement of one part of the system directly
influences the outcomes of a measurement of the other part. This is one manifestation of what is
called quantum “entanglement”. More specifically, a state of two systems is said to be entangled
if its coefficients cannot be written as the product of two independent coefficients.

If instead, the global wave function can be written as the product of two wave functions corre-
sponding to the subsystems A and B, then we say that the system is “separable”. For a separable
state, the wave function then reads

A) (B A B

[¥)sep = 3 €islTa) ® T = 37 e NTA»@!TB»:(Z% HTA»)@(zé >rTBj>):|w>®r¢>.
ij ij i J

If a system is separable, we also immediately see that a measurement performed on one part

does not affect the other one. For example, if we measure T4, the system will collapse into some

state

[10i) = |Tai) ® ),
(A)|27

with probability |c; but the resulting state for the subsystem B will always be |¢), indepen-
dently of the outcome of the measurement on A.

To explicitly determine whether a state is separable or entangled, we have to check whether the
matrix of coefficients factorizes or not, namely if the condition ¢;; = ch)cg.B)

For example, for two qubits, the condition of separability reads

is verified or not.

coo = c(()A)c(()B),
o1 = C((]A)CgB),
€10 = CEA)C(()B)7
C11 = CgA)CgB),

These conditions are satisfied if

coven —conern = Vg Vel - ViV Vg = 0

)
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Equivalently, we can write det ¢ = 0 where we have conveniently arranged the coefficients ¢;; in

a matrix:
A Coo  Co1
Cc= .
C10 €11

Thus, if the determinant of the coefficient matrix for the state in the composite basis is zero,
then the state is separable.

For example, our state
1
[¥) = NG (10)a®[1)p - [1)a®[0)B),

has a coefficient matrix

whose determinant is non-zero, and it is thus an entangled state.

Right, that’s the basic mathematical formalism you need to be familiar with in order to study
the behaviour of composite systems. Let’s move onto something more exciting and look at the
consequences of this formalism.

2.5 The Quantum Eraser

The two slit experiment is often the first thought experiment a student encounters when study-
ing quantum mechanics. Here we will explore some variants to it that highlight the curious
interplay between coherence, interference and entanglement.

Standard two slit experiment (1): Let us start with the standard two slit experiment. We
suppose that single horizontally polarized photons impinge on a screen with two slits and hit a
second screen placed behind the first (see Fig. [2.1p)). Although the photons hit the screen one
by one we see an interference pattern on the screen behind.

Standard two slit experiment (2): We now suppose that a 90 degrees polarisation shifter
is placed behind one of the slits (so that the light coming through it now is vertically polarized)
but otherwise leave the set up unchanged (Fig. ) What happens this time?

In this case the interference pattern does not arise. Instead we see a simple mixture of the two
patterns we would get if the photons went either through the top or the bottom slit as shown in
Fig. [2.1Ip. This is because if we measured each photons polarisation then we would be able to
determine if it went through the top or the bottom slit. Even if we do not in fact check which
slit we went through this information is enough to destroy the interference pattern.

Here is how to understand this mathematically. Let ¢ (z,t) be the wavefunction of a photon
emerging from the first slit, and 15 (x,t) be that from the second slit. Let the polarisation of a
photon be labelled by a H (horizontal) or V' (vertical) substate, so that a horizontally-polarised
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